
Fixed Point Theorems

We prove some �xed point theorems without use of homotopy. We follow
�Banach Space Theory, by Fabian et al for Brouwer�s Fixed Point Theorem,
Linear Operators by Dunford and Schwartz, Part I for Theorem 4 and �A
course on Functional Analysis by Conway for the others . We give more detailed
proofs than the one in above books with the hope that this will make it easier
for students to understand the proofs.

Theorem 1 [ Brouwer�s Fixed Point Theorem]
Any continuous map of fx 2 Rn : kxk � 1g into itself has a �xed point.

A proof of Brouwer�s �xed point theorem:

Lemma 1

If f : Sn�1 ! Rn is continuous, < f(x); x >= 0 and f(x) 6= 0 for all x then
there exists a continuously di¤erentiable function g : Rnnf0g ! Rn such that
kg(x)k = 1 for all x 2 Sn�1; g(rx) = rg(x) for all x 2 Rnnf0g for all r > 0 and
< g(x); x >= 0 for all x 2 Sn�1.

Proof: Let m = inffkf(x)k : x 2 Sn�1g. Of course, m > 0. There exists a
polynomial p : Rn ! Rn such that kp(x)� f(x)k < m=2 for all x 2 Sn�1. [ If
two polynomials coincide on Sn�1 then their di¤erence has in�nitely many zeros,
hence it is 0. Thus we can apply Stone -Weierstrass Theorem]. De�ne h : Rn !
Rn by h(x) = p(x)� < p(x); x > x. Claim: h is �smooth�, < h(x); x >= 0
whenever kxk = 1; kp(x)� h(x)k < m=2 for x 2 Sn�1. Only the last prop-
erty needs a proof. kp(x)� h(x)k = j< p(x); x >j = j< p(x)� f(x); x >j �
kp(x)� f(x)k < m=2 so the claim is proved. Claim: h(x) 6= 0 if x 2 Sn�1.
Indeed h(x) = 0 implies kp(x)k < m=2 and kf(x)k < kp(x)k +m=2 < m con-
tradicting the de�nition of m. Now let g(x) = kxkh(x=kxk)

kh(x=kxk)k for x 2 Rnnf0g. We
have < h(x= kxk); x >=< h(x); x >= 0 for x 2 Sn�1 and the proof is complete.

Lemma 2

Let K � Rn be a non-void compact set. Let f : 
 ! Rn be continuously
di¤erentiable where 
 is open and K � 
. Let ft(x) = x + tf(x) for x 2

. Then, for jtj su¢ ciently small, ft is one-to-one on K and mn(ft(K)) is a
polynomial in t.

Claim: there exists c 2 (0;1) such that kf(x)� f(y)k � c kx� yk for
all x; y 2 K. If not, then there exist xn; yn 2 K such that kf(xn)� f(yn)k >
n kxn � ynk 8n. By going to a subsequence we may suppose xn ! x and yn ! y.
If x 6= y we get kf(xn)� f(yn)k ! 1, a contradiction. If x = y then di¤eren-
tiability at x is contradicted. [ In fact kf(xn)� f(yn)k � kf 0(x)k kxn � ynk +
o(kxn � ynk)]. Let jtj < 1

c . Then ft(x) = ft(y) implies x � y = t[f(x) � f(y)]
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so kx� yk � jtj kf(x)� f(y)k � jtj c kx� yk which implies x = y. The matrix��
@(ft)i
@xj

��
is of the form I + tM where M =

��
@fi
@xj

��
. Hence det

��
@(ft)i
@xj

��
is a polynomial in t. Also det

��
@(ft)i
@xj

��
= det(I + tM) > 0 for jtj su¢ ciently

small. Since mn(ft(K)) =

Z
K

���det��@(ft)i@xj

����� dx [ see II, page 154 of Rudin�s
Real and Complex Analysis] we see that mn(ft(K)) is a polynomial in t.

Theorem 1 [ Hairy Ball Theorem]

If n is an odd positive integer there is no continuous map � : Sn�1 ! Rn
such that �(x) 6= 0 for all x and < �(x); x >= 0 for all x:

Remark: conclusion fails for n = 2: �(a; b) = (�b; a) has above properties.

Proof: suppose such a � exists. By Lemma 1 there exists a continuously
di¤erentiable function g : Rnnf0g ! Rn such that kg(x)k = 1 for all x 2
Sn�1; g(rx) = rg(x) for all x 2 Rnnf0g for all r > 0 and < g(x); x >= 0 for
all x 2 Sn�1. Let gt(x) = x + tg(x); x 2 Rnnf0g. Let K = fx 2 Rn : a �
kxk � bg where 0 < a < 1 < b. For jtj su¢ ciently small gt is one-to-one
on K and it maps K onto fx 2 Rn : a

p
1 + t2 � kxk � b

p
1 + t2g. [ Be-

cause < g(x); x >= 0 for all x 2 Sn�1 so kx+ tg(x)k = kx+ t kxk g(x= kxk)k =
kxk kx= kxk+ tg(x= kxk)k = kxk

p
1 + t2 by orthogonality]. It follows by Lemma

2 that mnfx 2 Rn : a
p
1 + t2 � kxk � b

p
1 + t2g coincides with a polynomial

in t for jtj su¢ ciently small. However we can compute this measure explicitly
and the value is [bn(1+ t2)n=2�an(1+ t2)n=2]mnfx : kxk � 1g. Since (1+ t2)n=2
is not a polynomial for n odd we have completed the proof. [ Let n = 2m� 1.
Suppose(1 + t2)m�1=2 = p(t) for jtj small, where p is a polynomial. Then
(1 + z2)2m�1 = p2(z) for all z 2 C. The right side must be a polynomial with i
and �i as the only roots and since p(t) is real for jtj su¢ ciently small it follows
that (1 + z2)2m�1 = c(z � i)k(z + i)k for some k. We get a contradiction by
comparing the degrees].

Theorem 2 [Brouwer�s Fixed Point Theorem]
If f : Sn�1 ! Sn�1 is continuous then f has at least one �xed point.

Proof: de�ne � : Rn ! Sn by �(x1; x2; :::; xn) = ( 2x1
1+kxk2 ;

2x2
1+kxk2 ; :::;

2xn
1+kxk2 ;

kxk2�1
kxk2+1 ).

[ It is trivial to check that � does have its range inside Sn]. Let �(u) =

lim
t!0

�(x+tg(x))��(x)
t where u = �(x) and g(x) = x � f(x)(1�kxk2)

1�<x;f(x)> . Let (S
n)l =

fx 2 Sn : xn+1 � 0g. Assuming that f has no �xed point we shall verify
that � is a continuous map from (Sn)l into Rn such that �(x) 6= 0 for all x
and < �(u); u >= 0 for all u 2 Sn. We will then show that there is a similar
map on (Sn)u = fx 2 Sn : xn+1 � 0g and that these two functions can be
combined to give a similar function on the whole of Sn. This would contradict
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the Hairy Ball Theorem, thereby completing the proof of Brouwer�s Theorem.
Continuity of � is clear. Note that �(x) 2 (Sn)l i¤ kxk � 1. Also note that
if u = �(x) then �(u) = �0(x)(g(x)) so < �(u); u >=< �0(x)(g(x)); �(x) >.
Let kxk = 1. We have to show that < �0(x)(g(x)); �(x) >= 0. We show that
< �0(x)y; �(x) >= 0 for any y. We have k�(:)k � 1. Writing �i for the i � th

component of � we have
n+1X
i=1

�2i (z) = 1 for all z. Hence
n+1X
i=1

�i(z)
@�i
@xj
(z) = 0 for all

z for all j. This gives
n+1X
j=1

yj

n+1X
i=1

�i(z)
@�i
@xj
(z) = 0 or

n+1X
i=1

(
n+1X
j=1

@�i
@xj
(z)yj)�i(z) = 0.

This says < �0(z)y; �(z) >= 0. This completes the proof of the fact that
< �(u); u >= 0 for all u 2 Sn. It remains to show that �0(x)(g(x)) 6= 0 for
any x 2 (Sn)l. For this we show that g(x) 6= 0 and that �0(x) is one-to-one for
each x with kxk � 1. Suppose g(x) = 0: Then f(x)(1�kxk2)

1�<x;f(x)> = x. In particular

f(x) = cx for some scalar c. We have cx(1� kxk2) = [1� c kxk2]x which gives
cx = x. But then f(x) = cx = x contrary to our assumption. Finally we show
that �0(x) is one-to-one for each x. Note that the range of � is contained in
fy 2 Rn+1 : yn+1 < 1g. De�ne F : E � fy 2 Rn+1 : yn+1 < 1g ! Rn by
F (y1; y2; :::; yn+1) = ( y1

1�yn+1 ;
y2

1�yn+1 ; :::;
yn

1�yn+1 ). F is a smooth function and
a simple computation shows that F (�(x)) = x for all x 2 Rn. It follows by
Chain Rule that F 0(�(x))�0(x) = I for all x 2 Rn. This implies that �0(x) is
one-to-one.

This theorem does not hold in an in�nite dimensional Hilbert space: if

f(x) = (

q
1� kxk2; x1; x2; :::) then f maps fx 2 l2 : kxk � 1g into itself

and is continuous. It has no �xed point.

Theorem 3
Any continuous map f of a compact convex K set in Rn into K has a �xed

point.

Proof: assume �rst that K � B � fx 2 Rn : kxk � 1g. De�ne � : B ! K
by taking �(x) to be the unique point y of K such that kx� yk � kx� zk for
all z 2 K. Such a vector y exists and is unique. Note that �(x) = y = x if
x 2 K. Consider f � � : B ! K as a function from B into itself. The function
g : B ! B de�ned by g(x) = f(�(x)) is continuous because � is continuous: let
xn ! x. We have kxn � �(xn)k � kxn � zk for all z 2 K; Hence, if y is any
limit point of f�(xn)g then kx� yk � kx� zk for all z 2 K. This proves that
�(x) is the only limit point of f�(xn)g which lies in the compact set K. Hence
�(xn)! �(x). By Theorem 1 there exists x 2 B such that f(�(x)) = x. Since
the range of f is contained in K we get x 2 K. But then �(x) = x so f(x) = x.
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This proves the theorem when K � B � fx 2 Rn : kxk � 1g. For the general
case choose R such that K � fx 2 Rn : kxk � Rg. Let K1 = fR�1x : x 2 Kg.
Then K1 is a compact convex set and the function f1 : K1 ! K1 de�ned by
f1(x) = R�1f(Rx) is continuous. By the �rst case there exists x1 2 K1 such
that R�1f(Rx1) = x1. If x = Rx1 then f(x) = x.

De�nition: a function f : E ! X where X is a normed linear space (nls)
and E � X is called compact if f(A) is relatively compact whenever A � E is
bounded.

Lemma 3
LetX be an nls andK � X be compact. Let " > 0 andB(x1; "); B(x2; "); :::; B(xN ; ")

cover K where fx1; x2; :::; xNg � K. let mi(x) = (" � kx� xik)+ and �(x) =
NX
j=1

mi(x)xi

NX
j=1

mi(x)

for x 2 K. Then � is continuous on K and k�(x)� xk < " for all

x 2 K. Further �(K) � co(K).

Proof: it is obvious that each mi is continuous and
NX
j=1

mi(x) > 0 for all

x 2 K. Hence � is continuous. If x 2 K then mi(x) 6= 0 implies kx� xik < "

and hence


NX
j=1

mi(x)(xi � x)

 < "
NX
j=1

mi(x) which proves that k�(x)� xk < ".

[ we have used the fact that mi(x) 6= 0 for at least one i]. Last part is obvious.

Theorem 4 [ Schauder Fixed Point Theorem]
Let E be a closed bounded convex set in an nls X and f be a continuous

map of E into itself: If f is compact then it has a �xed point.

Proof: let K = [f(E)]�. Then K is a compact subset of E. For each n
let �n : K ! co(K) � E be a continuous function such that k�n(x)� xk <
1=n for all x 2 K for all n. This is possible by the previous lemma. Let
fn = �n � f so that fn is a continuous map : K ! E. In the notation of
previous lemma there is a �nite set fx(n1 ; x

(n
2 ; :::; x

(n
Nn
g of K such that �n(K) �

Yn � span(fx(n1 ; x
(n
2 ; :::; x

(n
Nn
g). Let En = E \ Yn. Then En is a compact

convex set in the �nite dimensional space Yn. We claim that fn maps En
into itself. First note that f(En) � f(E) � K so fn = �n � f is de�ned
on En . Also �n takes values in co(fx

(n
1 ; x

(n
2 ; :::; x

(n
Nn
g)) � Yn as well as in

E so it takes values in En. By Theorem 2 there exists yn 2 En such that
fn(yn) = yn. Since yn 2 E and f(yn) 2 K we have k�n(f(yn))� f(yn)k < 1=n
for all n. In other words kyn � f(yn)k < 1=n for all n. Since ff(yn)g � K
and K is compact there is a subsequence ff(ynj )g converging to some y. Now
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ynj � y � f(ynj )� y + ynj � f(ynj ) < f(ynj )� y + 1=nj ! 0. This
implies f(y) = y.

Theorem 5 [ Schauder - Tychono¤ FPT]
Any continuous map f from a compact convex subset K of a Hausdor¤

locally convex topological vector space X into K has a �xed point.

Preliminaries: we introduce an ordering for subsets of X� as follows: A �
B if for any x� 2 A and " > 0 there exists a �nite subset y�1 ; y

�
2 ; :::; y

�
k of

B and � > 0 such that x; y 2 K and jy�i (x)� y�i (y)j < �; 1 � i � k imply
jx�(f(x))� x�(f(y))j < ". We observe that if A � B and y�(x) = y�(y) for
all y� 2 B then x�(f(x)) = x�(f(y)). Claim: for any x� 2 X� there exists
a countable family B = fy�1 ; y�2 ; :::g such that fx�g � B. For this let " >
0. First note that f is weak-weak continuous and K is compact convex in
weak topology. By uniform continuity of x� � f on K with its weak topology
jx�(f(x))� x�(f(y))j < " if x� y belongs to a suitable weak neighbourhood of
0. Hence there exists y�1 ; y

�
2 ; :::; y

�
k and � > 0 such that jy�i (x)� y�i (y)j < �; 1 �

i � k implies jx�(f(x))� x�(f(y))j < ". Now vary " over f 1n : n � 1g to get
a countable set B � X�. For any " > 0 choose n such that 1

n < ". There
exist y�1 ; y

�
2 ; :::; y

�
k and � > 0 such that jy�i (x)� y�i (y)j < �; 1 � i � k implies

jx�(f(x))� x�(f(y))j < 1
n < ". It follows that if jy�(x)� y�(y)j < � for all

y� 2 B then jx�(f(x))� x�(f(y))j < ". Hence fx�g � B. If we now repeat the
argument for each element of B to get another countable set B1, then repeat
the argument for each element of B1 and so on we end up with a countable
family B0 such that, together with x� itself, we get a countable subset C of X�

which contains x� with C � C.
Lemma 4
Let K be a compact convex set in a locally convex Hausdor¤ topological

vector space X. If K has at least two points and f : K ! K is continuous then
there is a proper subset K1 of K such that f(K1) � K1 and K1 is also compact
and convex.
We �rst remark that this lemma immediately yields Theorem 5: there

is a minimal non-empty compact convex set K0 such that f(K0) � K0 and K0

must be a singleton by the lemma.

Proof of the lemma: we �rst reduce the proof to the case when the topology
of X is replaced by the weak topology. f is weak to weak continuous and K is
weakly compact. If K1 weakly compact, convex and contained in K then it is
a weakly closed convex set, hence strongly closed. Hence it is a closed convex
subset of K in the strong (i.e. original) topology, hence strongly compact also.
Thus, we may and do assume that the topology of X is the weak topology.
Now suppose x; y 2 K;x 6= y. Choose x�such that x�(x) 6= x�(y). Let B =
fx�0 = x�; x�1; :::g be a countable subset of X� containing x� such that B � B.
Now x�i (K) is compact for each i � 0. We may suppose jx�i (z)j � 1

i+1 for all
i, for all z 2 K. [ This is because if C = fa0x�; a1x�1; :::g with each ai > 0
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then C � C]. De�ne h : K ! l2 by h(z) = fx�i (z)g. h is continuous (
by Dominated Convergence Theorem). Its range S is a compact convex set
contained in C0 = fa 2 l2 : jaij � 1

i+1 for all ig. S has at least two points
because x�(x) 6= x�(y). Let f0 : S ! S be the map h � f � h�1. In other words,
if a 2 S we pick z 2 K such that a = h(z) and de�ne f0(a) = h(f(z)). To see
that this is well de�ned note that a = h(z1) = h(z2) implies x�i (z1) = x�i (z2)
for all i which implies x�i (f(z1)) = x�i (f(z2)) for all i ( because B � B) so
h(f(z1)) = h(f(z2)) so f0 is well de�ned. The fact that B � B also implies
that if x�i (zn) ! x�i (z) as n ! 1 for each i then x�i (f(zn)) ! x�i (f(z)) for
each i. This means f0 is continuous. [ Convergence of a sequence in C0 w.r.t.
l2 norm is equivalent to coordinatewise convergence]. Lemma 4 below shows
that f0 has a �xed point a:Let K1 = h

�1(fag). Let z 2 K1 so h(z) = a. Then
a = f0(a) = h(f(z)). Hence f(z) 2 K1. Thus f(K1) � K1. Clearly K1 is
convex. It is a closed subset of S and hence it is compact.

Lemma 5
Let C0 = fa 2 l2 : jaij � 1

i+1 for all ig. Then any continuous map f : C0 !
C0 has a �xed point.

Proof: let An = f(x1; x2; :::; xn; 0; 0; :::) : x 2 C0g and de�ne gn : An ! An
by gn(x) = (y1; y2; :::; yn; 0; 0; :::) where y = f(x1; x2; :::; xn; 0; 0; :::). An can
be identi�ed with compact convex set in Rn and gn is continuous, hence it
has a �xed point x(n). [ It is trivial to see that if every continuos map on a
topological space X has a �xed point and Y is homeomorphic to X then every
continuos map on Y has a �xed point]. Since fx(n)g � C0 and C0 is com-
pact in l2 there is a subsequence fx(nj)g converging to some x 2 C0. Let y(n) =
f(x

(n)
1 ; x

(n)
2 ; :::; x

(n)
n ; 0; 0; :::) so that x(n) = gn(x(n)) = (y

(n)
1 ; y

(n)
2 ; :::; y

(n)
n ; 0; 0; :::).

It is clear that fx(n)1 ; x
(n)
2 ; :::; x

(n)
n ; 0; 0; :::g ! x so y(n) ! f(x). Hence x =

limx(nj) = lim(y
(nj)
1 ; y

(nj)
2 ; :::; y

(nj)
n ; 0; 0; :::)

= lim y(nj) = f(x).

Lemma 6
If K is a closed convex subset of C0 then every continuous map of K into

itself has a �xed point.

Proof: this is similar to the proof of Theorem 2. For each x 2 C0 there is a
unique point Px in K closest to x and the map P : C0 ! K is continuous. If
f : K ! K is continuous then g : C0 ! C0 de�ned by g = f � P is continuous.
Hence there exists x 2 C0 such that f(P (x)) = x. Since the range of f is
contained in K we see that x = f(P (x)) 2 K. But then P (x) = x so x = f(x):

Theorem 6 [ Markov - Kakutani FPT]
Let K be a compact convex subset of a locally convex Hausdor¤ topological

vector spaceX. Let f� : K ! K (� 2 I) be a family of continuous functions that
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are a¢ ne (which means they satisfy the condition f�(
nX
i=1

aixi) =
nX
i=1

aif�(xi)

whenever n 2 N, ai � 0 for all i and
nX
i=1

ai = 1). If f� � f� = f� � f� for all

�; � 2 I then there exists x 2 K such that f�(x) = x for all � 2 I.

Proof: let f (n)� = 1
n

n�1X
i=0

f i� where f
i
� is f� composed with itself i times. f

(n)
�

maps K into itself and any two members of ff (n)� : � 2 I; n � 1g commute. Let
F be the collection of sets f (n)� (K); � 2 I; n � 1. Each set in this collection
is non-empty, compact and convex. This family also has �nite intersection
property: given �j 2 I; nj � 1 for 1 � j � N consider (f (n1)�1 � f (n2)�2 ::: �
f
(nN )
�N )(K). It is clear that this non-empty set is contained in (f (nj)�j )(K) for

each j. Hence there is a point x0 which belongs to f
(n)
� (K) for all � 2 I; n � 1.

We claim that f�(x0) = x0 for all � 2 I for all n. Since x0 2 f (n)� (K) there
exists x 2 K such that x0 = f

(n)
� (x) = 1

n [x + f
1
�(x) + f

2
�(x) + ::: + f

n�1
� (x)].

Hence f�(x0)� x0 = 1
n [f

1
�(x) + f

2
�(x) + :::+ f

n�1
� (x) + fn� (x)]� 1

n [x+ f
1
�(x) +

f2�(x) + :::+ f
n�1
� (x)] = 1

nf
n
� (x)� 1

nx 2
1
n (K �K). This is true for each n and

hence f�(x0) = x0. [ Let U be a neighbourhood of 0. Then K �K � mU for
some m, since, otherwise, 9 xm 2 K �K(m = 1; 2; :::) such that 1

mxm =2 U for
any m; by compactness of K�K there is a subnet fxmi

g converging to some x.
But then 1

mi
xmi ! 0 contradicting the fact that 1

mi
xmi =2 U for any i. It now

follows that f�(x0)� x0 2 m
mU = U . Since U is arbitrary and X is Hausdor¤,

f�(x0) = x0].
Notation: if p is a seminorm on X and A � X we write dp(A) for supfp(x�

y) : x; y 2 Ag.

Lemma 7
Let X be a Hausdor¤ locally convex topological vector space and K be non-

empty, convex, weakly compact, separable subset. Let p be a weakly continuous
semi-norm on X and " > 0. Then there is a closed convex subset C of K such
that C 6= K and pd(KnC) < ":

Proof: let S = fx 2 X : p(x) � "=4g. By Krein - Milman Theorem K has
extreme points and it is the closed convex hull of the set of extreme points. Let
D be the closure of the set of extreme points of K in the weak topology. Let
fxng be a countable dense subset of K. For each x 2 K the neighbourhood
fy 2 K : p(y � x) < "=4g must contain some xn. Note that x 2 xn + S.
Thus K �

[
n

(xn + S). Since S is weakly closed ( because it is closed and

convex) and D is a weakly compact subset of K there exists n0 such that
(xn0 + S) \ D has non-empty interior in D. [ D with the weak topology is a
(locally) compact Hausdor¤ space so we can apply Baire Category Theorem].
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Hence there exists a weakly open set U such that U \D � (xn0 + S) \D and
U \ D 6= ;. Let K1 be the closed convex hull of DnU and K2 that of D \ U .
These two sets are weakly compact and convex. Any extreme point ofK belongs
to D � (DjU) [ (D \ U) � K1 [ K2. Also co(K1 [ K2) is weakly closed (see
below) and Krein - Milman Theorem implies K � co(K1[K2). But the reverse
inclusion also holds so K = co(K1 [K2).
Proof of the fact that co(K1 [K2) is weakly closed: if �ixi+�iyi ! z then,

through a subnet, �i ! �; �i ! �; xi ! x; yi ! y and � � 0; � � 0; � + � =
1; x 2 K1 and y 2 K2. Hence z = �x+ �y 2 co(K1 [K2).
Next, we show that K1 is a proper subset of K. Suppose K1 = K, i.e.,

K =
�
co(DnU). This implies that the extreme points of K belong to DnU . [ All

closures etc in this proof are w.r.t. weak topology. Suppose x0 is an extreme
point of K which does not belong to DnU . There exists a continuous seminorm
q ( viz. Minkowski functional of a balanced convex neighbourhood V of 0 such
that x0+V does not intersect DnU) such that (DnU)\fx : q(x�x0) < 1g = ;.
Let U0 = fx : q(x) < 1=3g. Then (x0 + U0) \ ((DnU) + U0) = ;. Hence x0 =2
[(DnU)+U0)]�. NowDnU is compact. ( We are referring to the weak topology).

Hence DnU �
k[
i=1

(yi+U0) for some �nite set fy1; y2; :::; ykg � DnU . The closed

convex hull Hi of ((DnU)\ (yi+U0)) is contained in yi+
�
U0. Also Hi � K. As

shown above co(
k[
i=1

Hi) is closed. Hence K = [co(DnU)]� � co(
k[
i=1

Hi). Since

x0 2 K we can write x0 as
kX
i=1

aixi with a0is � 0
kX
i=1

ai = 1 and xi 2 Hi for all

i. Since x0 is an extreme point of K it follows that x0 2 Hi for some i. Hence
x0 2 yi +

�
U0 � [DnU +

�
U0]

�, a contradiction]. [We now switch back to the
original topology of X]. Now since DnU is weakly closed ( because U is weakly
open) so D � DnU by the de�nition of D. This means D \ U = ;. This is a
contradiction to the choice of U . We have proved that K1 6= K.
Recall that U \ D � (xn0 + S) \ D. Hence K2; the closed convex hull of

D \ U is contained in xn0 + S = fx : p(x � x0) � "=4g. Hence the diameter
of dp(K2) � "=2. For 0 < r � 1 let fr(x1; x2; t) = tx1 + (1 � t)x2 for x1 2
K1; x2 2 K2; t 2 [r; 1]. Let Cr be the range of this function. Since fr is
continuous, Cr is weakly compact and convex. [ Indeed, K1 and K2 are weakly
close and fr is (weak,weak,usual) to weak continuous. Convexity of Cr is proved
as follows: �(tx1+(1� t)x2)+(1��)((sy1+(1� s)y2) = �z1+(1��)z2 where
� = �t+ (1� �)s; z1 = �tx1+(1��)sy1

� ; z2 =
�(1�t)x2+(1��)(1�s)y2

1�� ].
Claim: Cr 6= K for any r 2 (0; 1]. If Cr = K and z is an extreme point of

K then z 2 Cr so z = tx1 + (1 � t)x2 for some x1 2 K1; x2 2 K2; t 2 [r; 1].
But then t = 1 or z = x1 = x2. In either case z = x1 2 K1 so ext(K) � K1.
This implies K � K1 and hence K = K1. This contradiction shows that
Cr 6= K for any r 2 (0; 1]. Now note that Cr � K. Thus there exists a
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point z in KnCr. Since K = co(K1 [ K2) we can write z as tx1 + (1 � t)x2
with x1 2 K1; x2 2 K2; t 2 [0; 1]. Since z =2 Cr we must have t < r. Now
p(z�x2) = p(tx1�tx2) = tp(x1�x2) � rdp(K). Let u = sy1+(1�s)y2 2 KnCr (
y1 2 K1; y2 2 K2,0 < s < r). Then p(z�u) � p(z�x2)+p(x2�y2)+p(y2�u) �
rdp(K) + pd(K2) + rdp(K) [ since the argument used for p(z � x2) � rdp(K)
shows that p(y2 � u) � rdp(K)]. Thus p(z � u) � 2rdp(K) + "=2. We have
proved that dp(KnCr) � 2rdp(K) + "=2. If dp(K) = 0 we are done. Otherwise,
take r = "

4dp(K)
to get pd(KnCr) � ".

Let A � X and fTigi2I a family of maps from A into itself. We say fTig is
a contracting family if 9 x 6= y in A such that 0 2 fTix � Tiy : i 2 Ig�. The
family is a NCF (non-contracting family) if it is not contracting.
Remark: any subfamily of a NCF is a NCF.

Lemma 8
With above notations fTig is a NCF i¤ x 6= y (x; y 2 A) implies 9 a contin-

uous seminorm p such that inffp(Ti(x)� Ti(y)) : i 2 Ig > 0.

Proof: suppose x 6= y implies 9 a continuous seminorm p such that inffp(Ti(x)�
Ti(y)) : i 2 Ig > 0. If x 6= y then fz : p(z) < �g is a neighborhood of 0 which
does not intersect fTix � Tiy : i 2 Ig provided 0 < � < inffp(Ti(x) � Ti(y)) :
i 2 Ig > 0. Hence 0 =2 fTix � Tiy : i 2 Ig� and the given family is
not contracting. Conversely suppose fTig is a NCF. Suppose x 6= y. Then
0 =2 fTix� Tiy : i 2 Ig� and there is a balanced convex neighbourhood U of 0
such that U \ fTix� Tiy : i 2 Ig = ;. Let p be the Minkowski function al of U .
Then p is a continuous seminorm and p(Ti(x)� Ti(y)) � 1 for all i.

Theorem 7 [Ryll -Nardzewski FPT]
Let X be a Hausdor¤ locally convex topological vector space and A be a

weakly compact convex subset. Let fTi : i 2 Ig be a semigroup of a¢ ne maps
each of which is weakly continuous. If this family is a NCF then it has a common
�xed point in A.

Remarks: a family fTig of maps on A is a semigroup if it is closed under
composition. Any family generates a semigroup: just take all �nite compositions
of members of the family. We call this the semigroup generated by the given
family.

Proof: we �rst prove that any �nite subset fTi1 ; Ti2 ; :::; Ting has a com-
mon �xed point. The map S = Ti1+Ti2+:::+Tin

n is also a¢ ne and weakly con-
tinuous. By Markov - Kakutani FPT there exists x0 such that S(x0) = x0.
We claim that Tijx0 = x0 for all j � n. If Tijx0 6= x0 for some j then we
can rename the T 0ijs so that Tijx0 6= x0 for 1 � j � m and Tijx0 = x0 for

m < j � n. Let W =
Ti1+Ti2+:::+Tim

m . Then x0 = Sx0 = (
Ti1+Ti2+:::+Tim

n )x0 +

(
Tim+1

+Tim+2
+:::+Tin

n )x0
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= (
Ti1+Ti2+:::+Tim

n )x0 +
n�m
n x0. This gives Wx0 =

nx0�(n�m)x0
m = x0. We

are now in a situation where, with obvious change of notations, Tij (x0) 6= x0 for
any j but S(x0) = x0. In this case we proceed as follows: there exists " > 0 and
a continuos seminorm p such that for any Tl we have p(Tl(Tij (x0))�Tl(x0)) > "
(" independent of l). [ We used Lemma 6 with Tij (x0) and x0 in place of
x and y. The seminorm can depend on j but we can sum these seminorms
over j]. Let G1 be the semigroup generated by fTij : 1 � j � ng. Then
G1 � fTig and G1 consists of all �nite compositions of the maps Tij . Hence
G1 is a countable semigroup contained in fTig. Let K be the closed convex
hull of fTx0 : T 2 G1g. K is a separable weakly compact convex set and
K � A. [ It is weakly compact because it is a weakly closed subset of the
weakly compact set A]. By Lemma 5 there exist a closed convex set C � K
such that C 6= K and p(KnC) � ". For some T 2 G1 we have Tx0 =2 C. [For,
Tx0 2 C for each T 2 G1 implies K � C, so K = C, a contradiction]. Now
Tx0 = TT0(x0) =

TTi1x0+TTi2x0+:::+TTinx0
n so TTi1x0+TTi2x0+:::+TTinx0

n =2 C. It
follows that TTijx0 =2 C for some j. But pd(KnC) � " so p(T (Tijx0)�Tx0) � ".
This contradicts the choice of the seminorm p. We have proved that every
�nite subfamily of fTig has a common �xed point. For any �nite subfamily
fTi1 ; Ti2 ; :::; Ting of fTig the set fx 2 A : Tij (x) = x for 1 � j � ng is a weakly
compact convex set. These compact sets have �nite intersection property. Hence
that is a point x in the intersection of these sets. x is a common �xed point for
the family fTig.

Application to existence of Haar measure on compact groups.

Let Q be the set of all Borel probability measures on a compact topological
group G: Give Q the weak� topology induced from M(G) � (C(G))�. Con-
sider the following maps from Q into itself: � !x �y and � ! [x�y]

�1 where
(x�y)(E)�(xEy) and �

�1(E) = �(E�1). These form a semigorup of a¢ ne maps
on Q [ See proof below]. If we show that this family is a non-contracting and that
each of the maps in this semigroup is weakly continuous we can conclude that
there is a probability measure P on G with P (Ex) = P (yE) = P (E) = P (E�1)
for all E Borel in G for all x; y 2 G. Let us �rst show that above family
is a semigroup. Write Lx�(E) = �(xE); Ry�(E) = �(Ey); S�(E) = �(E�1).
We are considering the family fSLxRy : x; y 2 Gg [ fLxRy : x; y 2 Gg. We
claim that (SLx1Ry1)(SLx2Ry2) = Ly�11 x2

Ry2x�11
. This would show easily that

the family is a semigroup of a¢ ne maps. Now (SLx1Ry1)(SLx2Ry2)�(E) =
(SLx1Ry1)�S(x2Ey2)
= (SLx1Ry1)�(y

�1
2 E�1x�12 ) = S�(x1y

�1
2 E�1x�12 y1) = �(y�11 x2Ey2x

�1
1 ) =

(Ly�11 x2
Ry2x�11

)�(E). The fact that these maps are continuous for the weak�topology
is clear. It remains only to show that 0 =2 cl(fT�� T�gT ) where T ranges over
all the operators in our semigroup and � and � are distinct probability measures.
The maps (x; y) ! SLxRy and (x; y) ! LxRy are continuous and hence their
images are compact. Thus cl(fT��T�gT ) = fT��T�gT and 0 =2 fT��T�gT
since

R
fdT� =

R
fdT� for all f 2 C(G) implies

R
gd� =

R
gd� for all g.
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